Julia & graphic enthusiast. Interested in high performance computing, GPUs and machine learning.

Julia 1.3 VegaLite Environment

Update old Julia Image, and remove OpenGL plotting libraries to make image lighter!

]up; dev VegaLite; add VegaDatasets

VegaLite has problems building due npm running into file permissions, so we need to do it manually:

apt-get update
apt-get install npm libpixman-1-dev libcairo2-dev libpango1.0-dev libjpeg-dev build-essential -y
cd /root/.julia/dev/VegaLite/deps
npm install canvas --build-from-source --production --no-package-lock --no-optional -y
npm install --scripts-prepend-node-path=true --production --no-package-lock --no-optional -y

Now, one can use VegaLite,

using VegaLite, VegaDatasets

vega_plot = dataset("cars") |>
    x = :Horsepower,
    y = :Miles_per_Gallon,
    color = :Origin,
    width = 650,
    height = 400
) |> VegaLite.interactive()

One can also write out a json file to /results/, and it will display correctly if it contains valid Vega json and ends with the extension vl.json:

open("/results/test.vl.json", "w") do io
  show(io, MIME"application/vnd.vegalite.v3+json"(), vega_plot)
Loading viewer…

Or one can write out NamedTuples as JSON the same way:

data = (
  width = 650,
  height = 400,
  data = (
    url = "https://vega.github.io/vega-datasets/data/us-10m.json",
    format = (type = "topojson", feature = "counties")
  transform = [(
      lookup = "id",
      from = (
        data = (
          url = "https://vega.github.io/vega-datasets/data/unemployment.tsv",
        key = "id",
        fields = ["rate"]
  projection = (type = "albersUsa",),
  mark = "geoshape",
  encoding = (color = (field = "rate", type = "quantitative"),)
using JSON
open("/results/test.vl.json", "w") do io
  JSON.print(io, data)
Loading viewer…